Codeforces Round#374 Div.2

A. One-dimensional Japanese Crossword

题意:给一个由黑白组成,大小为1\times N的块,求所有黑的连续段

直接模拟即可


B. Passwords

题意:给N个字符串,然后告诉你其中的哪一个是正确的,你每次输入的字符串必须按照长度递增的顺序,长度相同可以按照任意方案,连续输入K次就会暂停5秒,问最快和最慢需要多少秒才能输到正确密码。

最快的是在相同长度中第一次就按到,最慢就是相同长度中最后一次按到

然后统计一发就没了,注意k的几个坑点


C. Journey

题意:给一张DAG,求1N的一条路径满足经过的点最多,总时间不超过T

考虑到DAG,我们很容易想到DAG上最短路的DP方法

然后我们不妨改一下,设dp[i,j]表示到达第i个城市,所经过的城市数为j的最小花费时间

那么我们就可以直接dp了,

dp[i,j]=min\begin{Bmatrix}dp[las,j-1]+w\end{Bmatrix}

注意要先循环j,我没循环导致wa了两次,这TM也能过样例也是醉了

输出方案只需要从N开始递归的向前走就可以

时间复杂度O(N\times M+N)


 

Codeforces Round#372 Div.2

A. Crazy Computer

ZS the Coder is coding on a crazy computer. If you don't type in a word for a c consecutive seconds, everything you typed disappear!

More formally, if you typed a word at second a and then the next word at second b, then if b - a ≤ c, just the new word is appended to other words on the screen. If b - a > c, then everything on the screen disappears and after that the word you have typed appears on the screen.

For example, if c = 5 and you typed words at seconds 1, 3, 8, 14, 19, 20 then at the second 8 there will be 3 words on the screen. After that, everything disappears at the second 13 because nothing was typed. At the seconds 14 and 19 another two words are typed, and finally, at the second 20, one more word is typed, and a total of 3 words remain on the screen.

You're given the times when ZS the Coder typed the words. Determine how many words remain on the screen after he finished typing everything.

继续阅读

Codeforces Round#371 Div.2

A. Meeting of Old Friends

Today an outstanding event is going to happen in the forest — hedgehog Filya will come to his old fried Sonya!

Sonya is an owl and she sleeps during the day and stay awake from minute l1 to minute r1 inclusive. Also, during the minute k she prinks and is unavailable for Filya.

Filya works a lot and he plans to visit Sonya from minute l2 to minute r2 inclusive.

Calculate the number of minutes they will be able to spend together.

继续阅读

[bzoj 4027][HEOI2015] 兔子与樱花

Description

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

继续阅读

[bzoj 2525][Poi2011] Dynamite

Description

The Byteotian Cave is composed of  n chambers and n-1 corridors that connect them. For every pair of chambers there is unique way to move from one of them to another without leaving the cave. Dynamite charges are set up in certain chambers. A fuse is laid along every corridor. In every chamber the fuses from the adjacent corridors meet at one point, and are further connected to the dynamite charge if there is one in the chamber. It takes exactly one unit of time for the fuse between two neighbouring chambers to burn, and the dynamite charge explodes in the instant that fire reaches the chamber it is inside.
We would like to light the fuses in some m chambers (at the joints of fuses) in such a way that all the dynamite charges explode in the shortest time possible since the fuses are lit. Write a program that will determine the minimum such time possible.

继续阅读

[bzoj 1124][POI2008] 枪战

Description

有n个人,每个人手里有一把手枪。一开始所有人都选定一个人瞄准(有可能瞄准自己)。然后他们按某个顺序开枪,且任意时刻只有一个人开枪。因此,对于不同的开枪顺序,最后死的人也不同。

继续阅读

[bzoj 1029][JSOI2007] 建筑抢修

Description

  小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者。但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建筑设施将会完全毁坏。现在的情况是:T部落基地里只有一个修理工人,虽然他能瞬间到达任何一个建筑,但是修复每个建筑都需要一定的时间。同时,修理工人修理完一个建筑才能修理下一个建筑,不能同时修理多个建筑。如果某个建筑在一段时间之内没有完全修理完毕,这个建筑就报废了。你的任务是帮小刚合理的制订一个修理顺序,以抢修尽可能多的建筑。

继续阅读

[bzoj 2097][Usaco2010 Dec] 奶牛健美操

Description

Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑。这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径。简单的说来, 这些点的布局就是一棵树,且每条边等长,都为1。 对于给定的一个奶牛路径集合,精明的奶牛们会计算出任意点对路径的最大值, 我们称之为这个路径集合的直径。如果直径太大,奶牛们就会拒绝锻炼。 Farmer John把每个点标记为1..V (2 <= V <= 100,000)。为了获得更加短 的直径,他可以选择封锁一些已经存在的道路,这样就可以得到更多的路径集合, 从而减小一些路径集合的直径。 我们从一棵树开始,FJ可以选择封锁S (1 <= S <= V-1)条双向路,从而获得 S+1个路径集合。你要做的是计算出最佳的封锁方案,使得他得到的所有路径集合 直径的最大值尽可能小。 Farmer John告诉你所有V-1条双向道路,每条表述为:顶点A_i (1 <= A_i <= V) 和 B_i (1 <= B_i <= V; A_i!= B_i)连接。 我们来看看如下的例子:线性的路径集合(7个顶点的树) 1---2---3---4---5---6---7 如果FJ可以封锁两条道路,他可能的选择如下: 1---2 | 3---4 | 5---6---7 这样最长的直径是2,即是最优答案(当然不是唯一的)。

继续阅读